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Abstract 

The role of terrestrial vegetation in transferring chemicals from soil and air into specific plant 

tissues (stems, leaves, roots, etc.) is still not well characterized. We provide here a critical review 

of plant-to-soil bioconcentration ratio (BCR) estimates based on models and experimental data. 

This review includes the conceptual and theoretical formulations of the bioconcentration ratio,  

constructing and calibrating empirical and mathematical algorithms to describe this ratio and the 

experimental data used to quantify BCRs and calibrate the model performance. We first evaluate 

the theoretical basis for the BCR concept and BCR models and consider how lack of knowledge 

and data limits reliability and consistency of BCR estimates. We next consider alternate 

modeling strategies for BCR. A key focus of this evaluation is the relative contributions to 

overall uncertainty from model uncertainty versus variability in the experimental data used to 

develop and test the models. As a case study, we consider a single chemical, hexahydro-1,3,5-

trinitro-1,3,5-triazine (RDX), and focus on variability of bioconcentration measurements 

obtained from 81 experiments with different plant species, different plant tissues, different 

experimental conditions, and different methods for reporting concentrations in the soil and plant 

tissues. We use these observations to evaluate both the magnitude of experimental variability in 

plant bioconcentration and compare this to model uncertainty. Among these 81 measurements, 

the variation of the plant/soil BCR has a geometric standard deviation (GSD) of 3.5 and a 

coefficient of variability (CV-ratio of arithmetic standard deviation to mean) of 1.7. These 

variations are significant but low relative to model uncertainties--which have an estimated GSD 

of 10 with a corresponding CV of 14. 
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Introduction 

Plant-to-soil and plant-to-air bioconcentration ratios (BCRs) are used to relate chemical 

concentrations measured in different vegetation tissues to concentrations in the soil supporting 

that vegetation. In spite of continuing laboratory and field studies, the role of terrestrial 

vegetation in transferring chemicals from soil and/or air into specific plant tissues (stems, leaves, 

roots, etc.) is still not well understood. The lack of chemical-, plant-, and site-specific BCR 

measurements has led to a reliance on empirical and process-based models to explain and predict 

the fate of chemicals in air/plant/soil systems. The uncertainties associated with both BCR 

experiments and the models derived from these experiments often limit the reliability of these 

models for making estimates of chemical uptake and estimating exposure to humans and 

ecological receptors.  

Chemicals in the environment are transferred to plant parts from both air and soil. Efforts to 

model and evaluate plant uptake of chemicals tend to focus separately on air-plant and soil-plant 

transfers. The focus of the models and data reviewed in this paper is on the soil-to-plant 

pathways. We recognize that field and chamber studies show that, in addition to soil uptake, both 

gas-phase uptake and particle-phase deposition can transfer chemicals from air to vegetation [1-

8].  But we restrict our evaluation to the body of theoretical and experimental work that 

addresses plant-to-soil BCRs.  These studies have led to models that explain the relative 

magnitude of soil-plant transfer based on chemical properties.  
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Chemicals in soil enter plants primarily through the root system and the degree of uptake 

from soil into root tissues appears to be proportional to the octanol/water partition coefficient, 

Kow [9]. Thus, studies on the bioconcentration of nonionic organic chemicals have focused on 

correlations between partition factors and chemical properties that express relative solubility, 

such as Kow. But the pool of data available for making soil-plant uptake models is limited. As a 

result, only relatively simple models are available to express plant uptake in terms of chemical 

properties such as Kow.  

In this paper we provide a critical review of plant-to-soil bioconcentration ratio (BCR) 

estimates based on models and experimental data. The key focus is on the reliability of BCR 

estimates and the sources and magnitude of uncertainty associated with BCR estimates in risk 

assessments and other impact studies. In the sections below, we consider the conceptual and 

theoretical formulations of the bioconcentration ratio, formulating and calibrating empirical and 

mathematical algorithms to describe this ratio and the experimental data used to quantify BCRs 

and calibrate the model performance. We review the uncertainties in conceptual vegetation mass-

balance models by evaluating the theoretical basis for these models and considering how lack of 

conceptual clarity leads to model uncertainty and misinterpretation. We next consider alternate 

modeling strategies and the associated changes in the reliability, fidelity, and transparency of the 

models.  Here we confront such issues in BCR model development as selecting the general 

model structure, how many compartments to include, and selecting the outcome metric—total 

fresh-mass concentration, fugacity, liquid-phase concentration, dry-mass concentration, etc .  

Finally, there is the issue of how measurement uncertainty and variability for calibration data 

define the reliability of BCR values derived from experiments and how this compares to model 

performance uncertainty. For this we evaluate both the magnitude and primary sources of 
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measurement variability and uncertainty in plant uptake experiments and compare these 

uncertainties to conceptual uncertainty and model formulation uncertainty.  Here we consider a 

single widely-studied chemical, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX),  and focus on the 

variability of BCR measurements obtained from a number of experiments with different plant 

species, different plant tissues, different experimental conditions, and different methods for 

reporting concentrations in the soil and plant tissues.  

Plant Bioconcentration Ratios: Concepts, Models, and Measurements 

In this section, we review the plan-soil BCR in terms of conceptual model formulation, 

mathematical model formulations, and model calibrations with experimental data.  Our goal is to 

review the current literature on plant uptake to provide a critical evaluation of how well the soil-

to-plant transfer pathway is understood and quantified.  We give particular attention to how gaps 

in conceptual understanding, limited experimental observation, and key assumptions contribute 

to the overall uncertainty in BCR estimates derived from experimental observation and models. 

Chemicals are transferred from soil to various plant parts through two stages [6, 9].  In the 

first stage, the chemical can be transferred from soil to the vegetation via one of four pathways—

(1) uptake through the roots; (2) volatilization of the chemical from soil with the chemical 

vapors trapped by the plant leaves; (3) rain-splash, where soil particles are dispersed onto the 

leaf surfaces following impact of rain drops on the soil surface, and (4) wind induced suspension 

of soil particles that subsequently fall out onto the surfaces of vegetation.  In the second stage the 

chemical moves from roots and/or leaves to other components of the plant (translocation).  These 

stages are illustrated in Fig. 1 where various concepts of the BCR are also illustrated.  
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Conceptual Models of Plant Uptake 

In the current scientific literature, plant-soil bioconcentration is used to describe the ratio of 

the concentration measured in vegetation to a concentration in the soil supporting that 

vegetation.  However, defining “concentration in vegetation” is often difficult, particularly in 

larger plants where the roots, stems, and leaves all have significantly different contaminant 

concentrations. A plant-to-soil BCR expresses the observed or predicted ratio of contaminant 

concentration in plant parts relative to concentration in soil.  There are at least five ways to 

define a plant BCR relative to chemical concentration in the soil solids (dry mass) or relative to 

the concentration in the water solution in soil. These definitions are summarized in Table 1. The 

choice of definition impacts both the interpretation of BCR measurements and the form of the 

model used to express them.   

General Model Formulations for the Plant-to-Soil BCR 

In order to evaluate the performance of BCR models, we consider here a range of existing 

models that express plant uptake in terms of the chemical properties such as Kow and 

quantitative structural factors such as the molecular connectivity index (MCI).  In the following 

paragraphs we describe the principal modeling options proposed in the current literature. In the 

next subsection we discuss tools for determining the reliability of these model for predicting 

plant uptake from soil. 

An early effort by Briggs et al. [10-11] used Kow to estimate uptake by roots, transpiration 

stream, and stems from soil solution. Others have since developed alternative models building on 

the Briggs et al.  approach. In particular, Travis and Arms [12] who reviewed measurements of 

bioconcentration reported in the literature for 29 persistent organo-chlorines in plants to develop 
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a Kow-based empirical regression model of plant-soil BCR (on a dry-mass basis) in above-

ground plant parts. Dowdy and McKone [13] compared the precision and accuracy of the MCI 

relative to Kow as a predictor of bioconcentration from the soil matrix into above- or below- 

ground vegetation tissues. However,  Riederer [14], McKone [15], and Dowdy and McKone [13] 

have all reported the low reliability of using simple plant/soil partition coefficients to 

characterize uptake. McFarlane et al. [16] have demonstrated experimentally that chemicals with 

similar values of Kow can have drastically different long-term partitioning. 

Based on experiments with 18 radio-labeled O–methylcarbamoyloximes and substituted 

phenylureas, Briggs et al. [10] measured partitioning between barley roots and nutrient solutions.  

They refer to this partition coefficient as the root concentration factor, RCF, which is defined in 

Table 1, and proposed estimation equations based on these data. Other researchers have applied 

different data sets to propose alternative formulations for the RCF regression with Kow [17, 18]. 

In order to represent the translocation of chemicals from the root-soil pore water to the stem of 

plants, Briggs et al. [10] defined the transpiration stream concentration factor (TSCF) and 

formulated a regression model for this BCR based on the same experimental set used for RCF. 

The TSCF accounts for the reduction in concentration in the pore water as it crosses the root 

membrane and moves through the xylem to the stem. Thus, the TSCF represents the ratio of 

contaminant concentration in the xylem stream of the stem, mg/L, to contaminant concentration 

in soil solution, mg/L. Hsu et al. [19] and Burken and Schnoor [18] have proposed alternate 

constants for the Briggs et al. TSCF model using alternate experimental data sets. Briggs et al. 

[11] also made measurements of chemical uptake in macerated stems from solutions for 8 O–

methylcarbamoyloximes and substituted phenylureas in barley shoots to develop a model of the 

stem to soil-solution concentration ratio (SCF).   

 



 10
 
 

Trapp and Matthies [20] developed a one-compartment differential mass balance model for 

air-to-plant and soil-to-plant uptake.  Included in this model are uptake from soil through the 

transpiration stream, gaseous deposition, volatilization from leaves, chemical transformation, 

and growth dilution.  Their model provides a method for assessing a transient and long-term 

BCR from soil solution to leaves. Hung and Mackay [21] followed a similar approach to mass 

balance as Trapp and Matthies [20], but used three compartments—roots, stem, and leaves—

instead of one compartment.  The Hung and Mackay model [21] provides a similar opportunity 

for constructing a transient and plant-specific method for calculating BCFs, but requires many 

more plant- and chemical-specific parameters. 

Dowdy and McKone [13] used the MCI as a quantitative structure-activity relationship 

(QSAR) for predicting plant-soil bioconcentration. They report that the normal path first-order 

MCI could reliably predict plant biotransfer for nonpolar compounds without any need for 

correction factors.  But they found that extension of this predictive model to estimate biotransfer 

for polar compounds requires an adjustment of the index with correction factors to account for 

polar group effects.   

Chiou et al. [22] revisited the data of Briggs et al. [10], Trapp et al. [23] and earlier data for 

pesticides to propose a novel modeling approach based on the following assumptions: (1) overall 

transport from soil is driven by soil-water concentration; (2) each volume element within the 

plant attains equilibrium with the sap in that component; and (3) the contaminant concentration 

in each volume element can be scaled to the soil-water solution.   
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Model Residual Error, Model Differences, and Model Uncertainty 

In order to compare different modeling approaches in terms of model error, we consider 

how well each model matches its own calibration set, how well the models compare with each 

other and how well each model tracks an ensemble set of data, pulled together from different 

studies.  

In order to evaluate how well a model matches its own calibration set, we use the standard 

error of the estimator (SEE). The SEE for a BCR derived from any estimation scheme (i.e., 

process based or regression model) is calculated according to the following formula [15, 24].  

 SEE of log Bx 
    
=

1
(n - 2)

  logBx
msd − log Bx

est[ ] i

2

i =1

n

∑   (1) 

where Bx refers to the estimated BCR , n is the number of chemicals used in the estimation 

protocol, Bxmsd refers to the measured BCR, and Bxest refers to the corresponding estimated BCR 

value. We also compare results by considering the geometric standard deviation (GSD) among a 

set of observations and the coefficient of variation (CV) for a set of observations, the ratio of 

arithmetic standard deviation to the arithmetic mean,  

 
CV =  Stdev/µ.

 (2) 

When we have the GSD and geometric mean (GM) from a set of observations or from the 

residual error of a model calibration exercise and need to estimate CV, we use Monte Carlo 

sampling from a lognormal distribution with the specified GSD and GM to estimate the 

arithmetic mean (µ), Stdev, and CV.  
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Variations in Mathematical Formulations for Models of Plant Uptake from Soil 

In the sections below we compare key features of a representative set of model formulations 

that we used to explore variations in BCR estimates among the models.  

We first consider RCF. Below is the Briggs et al. [10] estimation equation for RCF from 

their experiments with 18 radio-labeled O–methylcarbamoyloximes and substituted phenylureas 

taken up by barley roots from nutrient solution:  

 log (RCF – 0.82) = 0.77 log Kow –1.52  ± 0.12    (n=18, R2=0.97) (3) 

The term ± 0.12 is the SEE for the log RCF.  Based on studies of 9 carbon-14-labeled organic 

chemicals in barley and cress, Topp et al. [17] developed a second version of this regression 

model: 

 log RCF = 0.630 log Kow – 0.959  (n=9, R2=0.80) (4) 

Burken and Schnoor [18] used 11 carbon-14-labeled compounds taken up by poplar-tree shoots 

to obtain a third version of this model: 

 log (RCF – 3.00) = 0.65 log Kow –1.57    (n=11) (5) 

Equations 3, 4, and 5 give similar results for RCF at log Kow = 2, but at log Kow = 0 their RCF 

estimates differ by almost a factor of 30 and at log Kow = 6 they differ by a factor 5.  This is a 

much larger variation than the residual error reported in Equation 3, which we assume to be 

roughly the same for all three models. 

Briggs et al. [10] formulated the following regression model for TCSF based on their 18 

experiments with barley roots and nutrient solutions,   
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 log TSCF = 
    
0.784 × exp −

(log Kow −1.78)2

2.44

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  ± 0.27    (n=18, R2=0.61) (6) 

Hsu et al. [19] developed an equation of similar form using soybean roots, but with slightly 

different regression parameters: 

 log TSCF = 
    
0.70 × exp −

(log Kow − 3.07)2

2.78

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥  (7) 

Burken and Schnoor [18] used carbon-14-labeled compounds taken up in poplar-tree shoots to 

obtain a third version of this model: 

 log TSCF = 
    
0.756 × exp −

(log Kow − 2.50)2

2.58

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥      (n=11) (8) 

When log Kow is in the range 0 to 5, the estimate of TSCF differs among Equations 6 through 8 

by an order of magnitude. We note that this difference is much greater than the residual error 

shown in Equation 6. 

In order to obtain an estimate of the SCF, Briggs et al. [11] made measurements of chemical 

uptake in macerated stems from solutions for O–methylcarbamoyloximes and substituted 

phenylureas in barley shoots and obtained the following expression for the stem to solution 

concentration: 

 log K(stem/solution) = 0.95 log Kow – 2.05    (n=8, R2= 0.96) (9) 

Under the assumption that the contribution of the aqueous phase in stems to the uptake of 

chemical by stems is similar to that in roots (that is 0.82), Briggs et al. [11] used Equation 7 to 

develop the following relationship for the stem/xylem-sap partition coefficient: 
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 log [K(stem/xylem sap) + 0.82] = 0.95 log Kow – 2.05 (10) 

From Equation 10, Briggs et al. [11] developed the stem concentration factor (SCF). Based on 

the assumption that SCF is the product of K(stem/xylem sap) and TSCF (from Equation 4) they 

obtained the following model formulation of SCF,  

 SCF = ( )
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ −
−×××+

44.2
)78.1(log

exp784.00089.0082.0
2

95.0 ow
ow

K
K  (11) 

The widely used Travis and Arms [12] correlation of plant-soil bioconcentration (on a dry-

mass basis) in aboveground plant parts with Kow is expressed as     

 log BCRd,ss = 1.58 – 0.58 log Kow  ± 0.73   (n=29, R2=0.525) (12) 

The error term in Equation 12, ± 0.73, was not provided by Travis and Arms [12] but was 

calculated by McKone [15] using the SEE.  

The Trapp and Matthies [20] model provides a method for assessing a transient and long-

term BCR from soil solution to leaves.  When the concentration of contaminant in air is low 

relative to plant, their model reduces to the following form for expressing the transient and plant-

specific biotransfer factor,   

 BCRf,sw(t) = CL(t)/Cw = 
  

TSCF × Q
mLa

× 1− exp(−at )[ ]  (13) 

where  

CL = concentration in plant leaves, mg/kg; 

Cw= concentration of contaminant in soil solution, mg/L;  

a = Ag/(KLAVL) + ke + kg
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A = leaf area, m2; 

g = air-to-leaf conductance, m/d; 

KLA= leaf-air partition coefficient, mg/m3(leaf) per mg/m3(air); 

VL= volume of leaves, m3; 

ke  = rate constant for elimination by chemical transformation (i.e. metabolism) within the 

leaves, 1/d; 

kg = growth dilution rate constant, 1/d; 

TSCF = transpiration stream concentration factor; L(soil solution)/L(transpiration stream); 

Q = transpiration flow from soil through stems, L/d; and  

mL = fresh mass of the leaves, kg. 

 

As time, t, become large with respect to a and for log Kow less than 4, Equation 13 tends to track 

the SCF proposed by Briggs et al. [11] (Equation 11).  When log Kow is above 4, this BCR tends 

to be significantly lower than SCF.  However, this is expected since this expression provides a 

mass-balance for leaves, whereas the SCF is for stems. 

Using the polar-corrected MCI, 1χpc, Dowdy and McKone [13] developed the formulations 

below for bioconcentration ratios (BCRs) for roots relative to soil (root-s) and above ground 

plant relative to soil (abg-s). 

 log BCRroot-s = 0.718(
1χpc) - 2.372  ± 0.90   (n=16, R2= 0.84), (14) 

 log BCRabg-s = -0.204(
1χpc) + 0.589  ± 0.34   (n=30, R2= 0.83) (15) 
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The units of BCRroot-s are L(soil solution)/kg (plant fresh mass) and the units of BCRroot-s 

are kg(soil dry mass)/kg(plant dry mass).  Both terms have large residual errors because of the 

large range of physical-chemical properties of the organic chemicals addressed in this regression. 

Chiou et al. [22] expressed the concentration of a contaminant in either the whole plant or a 

specific part of the plant (i.e., roots, stems, leaves, etc.) (Cpt) on a wet-mass basis relative to soil-

water concentration Cw using the following expression: 

 Cpt = αpt Cw [φpomKpom + φpw] (16) 

The term αpt is called “the quasi-equilibrium factor”, which describes the approach to 

equilibrium of any absorbed contaminant in the plant (or in a part of it) with respect to the same 

contaminant in soil solution. Kpom is the contaminant partition coefficient between plant organic 

matter and water, φpom is the total weight fraction of the organic matter in the plant, and φpw is 

the weight fraction of water in the plant, either for the whole plant or for a specific part of it. In 

this model αpt may be viewed as the ratio of the respective concentrations in plant water and 

external water. Thus, αpt = 1 denotes the state of equilibrium. The magnitude of αpt (≤1) is a 

measure of the extent of approach to equilibrium. If passive transport is the dominant uptake 

process, αpt should not exceed 1, except for highly unusual situations; if the uptake involves an 

active process, αpt may however exceed 1. Chiou et al. [22] determined values of αpt based on 

the data of Briggs et al. [10], Trapp et al. [23], and earlier data for pesticides and found that 

alpha varied roughly within an order of magnitude among the various experimental results. 
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New Opportunities for Model Calibration and Testing 

In addition to the published experimental data that have been used to develop current 

bioconcentration models [10, 11, 12, 16, 17, 19, 20], there have been a number of recent 

experimental assessments that provide additional opportunities to evaluate the performance of 

plant-to-soil bioconcentration models. For example, Sicbaldi et al. [25] have compiled new data 

on root uptake of pesticides.  Kraajj and Connell [26] have measured the root-to-soil 

bioconcentration of a series of chlorobenzenes in soybean roots.  Kipopoulou et al. [27] have 

measured the plant-to-air and/or plant-to-soil bioconcentration of polycyclic aromatic 

hydrocarbons in vegetables grown in an industrial area.  The US EPA [28] have compiled data 

on soil and plant concentration data that provides a potential opportunity to assess plant-to-soil 

partition factors for a number of dioxin congeners. 

Compilation of Experimental Data Showing BCR Variability for Single Chemical 

We focus on the collection of BCR data for a single chemical in order to evaluate how 

experimental variability impacts BCR estimates,. In the next section where overall BCR 

reliability and uncertainty are considered, we compare this experimental variability to both to 

conceptual model uncertainty and to model formulation uncertainty.  As the single chemical of 

interest, we select hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), a compound that has been 

studied extensively. We assembled a number of reports and journal papers describing 

experiments in which plants were grown in soil or water containing a measured concentration of 

RDX and in which the plant tissues were sampled for RDX. Through this process we obtained 81 

different experimental observations of plant-to-soil BCRs for RDX from experiments with 

different plant species, plant tissues, experimental conditions, and methods for reporting 
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concentrations in the soil and plant tissues. These measurements are summarized in Table 2. The 

cited studies include experimental data on ten different plant types--alfalfa, beans, corn, lettuce, 

tomato, carrot, cucumber, nutsedge, radish, and spinach; seven different plant tissues--roots, 

stem, leaves, pods, fruits, tassels, and seeds; both dry- and fresh-mass based measures of plant 

concentrations; measurements of chemical concentration and of radio-labeled tracers; and both 

dry- and solution-based measures of soil concentrations.   

The results in Table 2 include observations from six different reports that provide results 

from multiple experiments, and different experimental protocols. Cataldo et al. [29] used radio-

labeled RDX to measure uptake from contaminated soil into the roots, stems, leaves, pods, and 

seeds of bean plants. They also used beans grown in hydroponic solutions with radio-labeled 

RDX to compare with their field results. Cataldo et al. [29] report all plant concentrations on a 

fresh-mass basis. But they report their soil concentrations on a dry mass basis and also report soil 

organic carbon. Checkai and Simini [30] used hydroponic studies to measure concentrations of 

RDX on a fresh-mass and dry-mass basis in tissues of plants grown in a growth solution with a 

specified RDX concentration. They carried out these experiments for bush bean fruit, corn 

stover, lettuce leaves, alfalfa shoot, radish roots, and tomato fruit. Price et al. [31] reported the 

dry mass plant tissue concentration relative to soil fresh-mass concentration for experiments that 

exposed corn kernel, corn stover, lettuce leaves, nutsedge, and tomato fruit, to RDX in soil and 

soil solution. Harvey et al. [32] used radio-labeled RDX in 1- and 7-day hydroponic studies to 

measure uptake in bean roots, bean stems, and bean leaves. Fellows et al. [33] reported the dry 

mass plant tissue concentration relative to soil dry-mass concentration for corn ear, corn stem, 

corn leaves, corn tassel, alfalfa roots, alfalfa shoot, alfalfa seeds, carrot shoot, spinach root, 
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spinach shoot, and spinach seeds. Larson et al. [34] measure the uptake on a dry mass basis in 

the leaves and tassels of corn grown in RDX contaminated solution.   

The compilation of BCR values in Table 2 shows large variations in the experimental 

conditions and interpretations of measurements. In order to harmonize these data we converted 

all the results to an equivalent BCR with units of concentration in plant fresh mass divided by 

soil solution concentration, that is µg/kg (fresh plant mass) per µg/L(soil water).  For some 

experiments this required the conversion of a reported soil dry mass concentration to an 

equivalent soil solution concentration for which we used the follow conversion: 

 C(soil fresh mass) = C(plant dry mass)/Kd= C(plant dry mass)/(Kocfoc) (17) 

Where Kd is the soil-water distribution coefficient (µg/kg[soil] per µg/L[water]), which is 

estimated as the product of the organic carbon partition factor Koc (µg/kg[organic carbon] per 

µg/L[water]) and the fraction of organic carbon in soil, foc.  For RDX, we used a Koc value equal 

to 100 [35]. The values we used for foc are reported in Table 2 and obtained from the cited 

references.  For some experiments we had to convert a reported plant dry- mass concentration 

(µg/kg) to an equivalent plant fresh-mass concentration (µg/kg). For this we used the following 

conversion: 

 C(plant fresh mass) = C(plant dry mass)*fdry-mass (18) 

Where fdry-mass is the fraction of plant fresh mass that will become dry mass under experimental 

conditions. In Table 2, we list the value used for this parameter when it is required. These values 

were either obtained from the cited reference or assigned a default value of 0.2 when there is no 

reported value. 
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We applied a statistical analysis to the values of the RDX BCR in Table 2 to determine the 

characteristics of the range and spread of these results. The arithmetic mean and standard 

deviation of the 81 RDX BCR values given in Table 2 are, respectively, 2.3 and 4.0, 

corresponding to a CV of 1.7.  The GM and GSD are respectively 1.1 and 3.5. 

The Reliability of Plant Bioconcentration Estimates 

In order to evaluate the reliability of the models and experimental data currently available to 

assess plant-soil BCR, we consider three issues. First we consider uncertainties that arise from 

conceptual model formulation.  These results are primarily qualitative and subjective, but set the 

stage for the more quantitative reliability questions. Next, we consider the likely variation in 

results from mathematical models used to characterize plant uptake from soil. Our focus here is 

on the residual error associated with the use of models to estimate the BCF for an unspecified 

soil/plant/plant tissue system.  Finally, we consider the estimation error associated with using our 

collection of experimental observations for RDX to make an estimate for the BCF for RDX in an 

unspecified soil/plant/plant tissue system and compare this to the uncertainty associated with 

making BCR estimates from models.  

Uncertainties in Model Formulation 

Based on our review of available plant biotransfer models, we find that the range of 

conceptual model formulation options introduces significant, but difficult to quantify, 

uncertainty to the process of modeling BCRs. A key source of uncertainty and potential error is 

in the definition of bioconcentration and selection of the appropriate soil concentration metric 

(dry mass, fresh mass, soil solution, etc.) and the representative plant concentration metric, plant 

species, and plant tissue.  But even when the concept and metric of BCR is clear, there are 
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additional key uncertainties introduced by the options and limitations for measurements that 

support the conceptual model. As observed previously by Paterson et al. [9], three types of 

factors affect the uptake and distribution of chemical compounds within plants.  First and 

foremost are physicochemical properties of the compound such as water solubility, vapor 

pressure, molecular weight, and octanol/water partition coefficient.  Second are environmental 

characteristics including temperature of the soil as well as organic and mineral matter content 

and water content of the soil.  Third are plant characteristics such as the type of root system, 

shape and composition of the leaves, and lipid (oil) content.  These three issues limit the options 

for reducing uncertainty at the model formulation stage.  The reliability of any model based on 

physicochemical properties is also limited by the accuracy and availability of these properties. 

Physicochemical properties for many compounds are not accurately known.  Soil characteristics 

are highly variable from one location to another and also vary seasonally at a single location.  In 

addition, plant characteristics also vary significantly from one plant species to another, and 

seasonally in the same plant.  

BCR Model Uncertainty due to Residual Calibration Error and Model Differences 

Our confidence about the ability of models to provide estimates of BCRs derives both from 

the ability of a single model to match its calibration set of chemicals and from the consistency 

with which different models produce similar BCR values.   

Our evaluation reveals that the residual errors (SEE) of the log BCR among different 

models relative to measured values range between 0.12 to 0.9 log units, which is equivalent to a 

geometric standard deviation (GSD) range of 1.3 to 8, corresponding to a coefficient of variation 
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(CV) of between 0.27 and 8.6. While this is not a measure of overall model uncertainty, it does 

measure how well a model fits its own calibration set.  

The more important issue, however, is the expected reliability of the models for predicting 

BCR values for chemicals not included in their calibration set.  This test has rarely been applied, 

but we can use the results above to make some general comparisons. In Fig. 2 we provide a plot 

of the BCR estimates for several models with log Kow as the predictive parameter. We also 

include in this figure the calibration data for each model to get a sense of how the results 

converge or diverge among the different models.  To construct this figure, we converted all the 

measured values and the model predictions to equivalent plant-fresh-mass-soil-solution BCR 

ratios. This figure has a log-log scale and reveals a significant divergence among the models.  

For example, we see here that both the TSCF and the SCF models of Briggs et al [10, 11] predict 

a rapid fall in BCR above a Kow of 3 for the TSCF models and above a Kow of 6 for the SCF 

model. But the Briggs et al. [10,11]-type models for RCF, TSCF, and SCF have not been tested 

for compounds with log Kow above 5 to confirm this rapid decrease.  Moreover, this is not 

consistent with experimental observations of BCR for some higher Kow compounds.  

Nevertheless, the Briggs et al. [10,11]-type models appear to have relatively high reliability for 

fitting observations for chemicals with 0 <  log Kow < 5 or 6. Although the Travis and Arms [12] 

BCR model tends to track along the center range of the measured values shown in Fig. 2, we 

note that it should only be used for compounds with 1 < log Kow < 9, i.e., the range in which the 

model was calibrated. 

In Fig. 2 we include two (dark) lines that capture the roughly 4 standard deviation interval 

(95% confidence interval) around both the experimental and model results.  These lines indicate 
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that the differences among both the models and the observations used to construct them have an 

estimated GSD of 10 with a corresponding CV of 14. These are large uncertainties. But, this 

ensemble uncertainty is not significantly higher than the residual estimation error of models that 

are designed to capture variability of BCR across a broad range of chemical properties. For 

example the residual error of the MCI-based regression model [13], as reflected in Equation 14 

has GSD of 8. 

BCR Uncertainty for a Single Chemical due to Experimental Variability  

In order to provide an example of the uncertainty due to variability, we developed a 

cumulative probability plot for the 81 observed values of RDX BCR reported in Table 2.  We 

developed this probability plot based on their rank order using the relationship: 

Cumulative Probability = (rank-0.5)/81  (19) 

The resulting cumulative probability plot for the 81 RDX BCR observations is shown in Fig. 3 

as a series of open circles.  Also plotted for comparison in Fig. 3 is a cumulative lognormal 

probability distribution with GM 1.1 and GSD 3.5.  We see here that the lognormal distribution 

with these moments provides a good fit to the variance in BCR from the set of experimental 

observations. 

We focus on the single compound RDX to gain insight on the relative contributions of 

model uncertainty and experimental variability to our ability to estimate a BCR for a selected 

organic chemical. Fig. 4 summarizes our comparison presented as two cumulative probability 

distributions. The two lognormal distributions in Fig. 4 show the relative variance attributable to 

experimental variability and to model uncertainty for estimating the BCR value for a chemical 

such as RDX that has an expected BCR value of 1.1. The lognormal distribution for variance in 
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BCR obtained from 81 experiments is taken from Fig. 3 (GSD of 3.5; CV of 1.7). We estimate 

that, in the absence of any chemical and site-specific experimental information, the expected 

uncertainty of a BCR model for RDX can be represented by a log normal distribution with a GM 

of 1.1, a GSD of 10, and a CV of 14. This is the second cumulative distribution shown in this 

figure. Also shown are estimated 95% confidence intervals on the BCR estimate based on model 

uncertainty and experimental variability.  

In order to compare the relative contribution of experimental variability and model 

uncertainty, we used the R2 squared statistic, which is a measure of variance in one set of 

observations explained by a second set. We computed R2 from the two the sources of variation--

the variance of the experimental measures about the mean BCR and the variance attributable to 

the uncertainty in results from the model-based estimates of the BCR. We did this by using 

random sampling to obtain 3000 samples from the lognormal distribution of model uncertainty 

and 3000 samples from the lognormal distribution for experimental variability. Based on the 

correlation coefficient R between these two samples, we obtained an R2 equal to 0.57. This 

indicates that a significant fraction of the overall BCR estimation uncertainty is attributable to 

experimental variability.  

Discussion and Findings 

Our critical review of the range and reliability of methods for estimating plant-soil BCR 

offers insight for environmental scientists who must interpret and apply plant-uptake estimates 

obtained from models and experiments.  In this assessment we have emphasized the importance 

of confronting uncertainties at each stage of the model development and application. We see that 

uncertainty emerges at the conceptual model stage as well as during mathematical model 
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formulation and calibration and in model applications. The results above show that uncertainty is 

not simply a variance propagation or “Monte Carlo” assessment that is used to propagate 

parameter variance at the model application stage.  Instead it is a process that begins at the 

earliest stage of model development and accrues through model formulation and specific 

applications. 

In the studies reviewed in this paper, we find that important uncertainties arise at the first 

stage of model development—the concept formulation. For plant uptake models that address 

competing soil-root-leaf and soil-air-leaf pathways, conceptual uncertainties remain a dominant 

source of overall uncertainty.  An important contributor to this conceptual uncertainty is the lack 

of a consistent definition of BCR for soil uptake in both experiments and models.  This leads to 

confusion and inconsistency in the use of BCR. Because this type of uncertainty is difficult, if 

not impossible, to quantify, we must develop qualitative methods and classifications to 

communicate this important source of uncertainty.  

In evaluating model formulation, we observe large differences among models in their 

predictions of BCR, but we discovered no clear basis for selecting one model as more accurate 

than another.  The residual errors reported for many of the models in fitting their calibration data 

leads us to believe that we do not yet have sufficient data to formulate accurate models.  But our 

review of experiments for the single chemical RDX reveals that much of the uncertainty is 

attributable to the lack of precision and variability of experimental data used to obtain the BCR 

values used to calibrate models. It appears that there are advantages to using more than one 

compartment in formulating BCR models. But lack of experimental data and the poor state of 

conceptual knowledge suggests that model uncertainty cannot be reduced by adding large 

numbers of compartments to the models. Too many plant components in our models lead to over 
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specification.  But a single compartment model can miss the combined effect of root and shoot 

uptake processes.  

The interaction among measurements, conceptual models, and models leads to the 

conclusion, contrary to our initial expectation, that it may not be possible to distinguish the 

relative contributions of overall uncertainty from conceptual uncertainty, measurement 

variability, and model uncertainty.  For example, the variations in the value of BCR obtained 

from the 81 experiments we considered for RDX span a rather wide range.  But it is not clear 

how much of this variation is attributable to experimental uncertainty and how much to 

inadequate conceptual models.  Often the conceptual model is used to design experiments so that 

an incorrect conceptual model leads to measurements that are difficult to interpret when they are 

inconsistent with the concept.  Perhaps the variance in the experimental values would be much 

lower if we understood better how BCR is affected by variables whose impact is not yet fully 

understood—for example temperature, soil properties, etc.  Similarly if we really had a complete 

and thorough conceptual understanding of the process of uptake, then choosing a mathematical 

equation would likely be less uncertain.  That is, the mathematical model formulation may only 

appear uncertain because we are using mostly-empirical mathematical relationships to describe a 

process that we do not understand well enough at a conceptual level.  So it is not clear whether 

we classify this as uncertainty in the mathematical model formulation, or as uncertainty in the 

conceptual model. 

In applying model performance evaluation to plant uptake modeling, the results and 

discussion above lead us to a number of key findings.  These include: 

The conceptual formulation of the bioconcentration ratio has an important, but at this point 

difficult to quantify, contribution to overall uncertainty. In particular, the concept of different 
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plant components, the selection of dry- versus fresh-mass concentrations, and the use of 

dynamic or steady state concentration ratio strongly impact the reliability and uncertainty of 

the resulting BCR model. 

 

When we consider both the performance of models with respect to their calibration 

experiments and also compare different models, we find that quantitative results for any 

randomly selected organic chemical have very large model uncertainties. We estimate that in 

the absence of specific experimental information, the expected uncertainty of a BCR model 

can be represented by a log normal distribution with a GSD of 10 (CV = 14). This means that 

without additional information on plant species or without plant- and site- specific 

measurements, we can only expect a model to predict a BCR within ±1 log units such that 

there is a 66% likelihood that the actual BCR value is 10 times higher or lower than the value 

obtained from a model. 

 

Based on consideration of a large number of experiments for a single, well-studied 

compound, RDX, we find that experimental measurements of BCR have large experimental 

variability and that this experimental variability can be represented by a lognormal 

distribution with a GSD of 3.5 (CV = 1.7).  This indicates much of our observed model 

uncertainty most likely derives from experimental variability. This leads to the observation 

that controlled measurements cannot necessarily remove the large uncertainties that derive 

from BCR models. 
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Comparison for RDX of the relative contributions of model uncertainty and experimental 

variability to uncertainty in BCR estimates indicates that a large fraction of model 

uncertainty can be attributed to experimental variability.  

 

The variability and complexity of the uptake and transport of chemicals in vegetation cannot 

be captured by a point-value for BCF, but requires the use of ranges and confidence intervals 

to communicate the large uncertainties associated with estimating BCRs. In any plant-uptake 

model used to estimate a BCR, we must develop a process for communicating both the 

magnitude of the result and the confidence that can be placed in this number.  On the part of 

the assessor this requires a presentation of both qualitative and quantitative uncertainties. 
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Table 1.  Comparison of various definitions of the plant-soil bioconcentration ratio (BCR).  

Description  Formula 

BCR for plant dry mass relative to dry 

soil (soil solids) concentration 
BCRd,ss = 

 

Concentration in dry plant tissue (mg/kg)
Concentration in dry soil (mg/kg)

 

BCR for root (fresh mass) concentration 

relative to chemical 

concentration in the water 

solution in soil (or soil solution) 

and referred to as the root-

concentration factor (RCF) 

 

RCF = 
 

Concentration in fresh plant roots (mg/kg)
Concentration in soil solution (mg/L)

 

BCR for transpiration stream 

concentration relative to 

chemical concentration in the 

water solution in soil and 

referred to as the transpiration-

stream-concentration factor 

(TSCF) 

 

TSCF = 
 

Concentration in transpiration stream (mg/L)
Concentration in soil solution (mg/L)

 

BCR for plant fresh mass relative to 

chemical concentration the 

water solution in soil (for 

example SCF) 

BCFf,sw = 
 

Concentration in fresh plant tissue (mg/kg)
Concentration in soil solution (mg/kg)

 

BCR for plant fresh mass relative to 

chemical concentration to dry 

soil (soil solids) concentration 

Kps = 
 

Concentration in fresh plant tissue (mg/kg)
Concentration in dry soil (mg/kg)
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Table 2. Compilation of bioconcentration ratio (BCR) values for RDX and summarized by plant type/part, supply 
medium, supply medium concentration, plant concentration and by whether the soil and plant 
concentrations are on a dry mass (dm) or fresh-mass (fm) basis. 

 
Plant type and 

part 

 
Supply 

Medium 

Medium 
Conc. 

ppb RDX 

Cited 
as dm 
or fm 

 
Soil foc

Plant 
Conc. ppb 

RDX 

Cited 
as dm 
or fm 

Plant 
dm 

fraction 

 
BCR 
result 

 
Ref. 

Bean pods soil 10,000 dm 0.005 1,292 fm  0.06 [29] 
Bush bean fruit water 100 fm  7 fm  0.07 [30] 

Bean roots soil 10,000 dm 0.005 1,500 fm  0.08 [29] 
Tomato fruit soil 50,300 fm 0.030 74,519 dm 0.07 0.10 [31] 
Corn kernal soil 50,300 fm 0.030 6,140 dm 0.34 0.11 [31] 
Radish roots water 100 fm  14 fm  0.14 [30] 
Tomato fruit water 100 fm  16 fm  0.16 [30] 
Bean stems soil 10,000 dm 0.005 3,738 fm  0.19 [29] 

Bush bean fruit water 20 fm  4 fm  0.20 [30] 
Bean pods soil 10,000 dm 0.017 1,502 fm  0.26 [29] 

Corn Stover water 100 fm  126 dm 0.23 0.29 [30] 
Lettuce Leaves water 134 fm  1,600 dm 0.03 0.30 [31] 

Radish roots water 20 fm  6 fm  0.30 [30] 
Tomato fruit water 20 fm  6 fm  0.30 [30] 
Tomato fruit soil 1,770 fm 0.030 7,867 dm 0.07 0.30 [31] 
Bean roots soil 10,000 dm 0.017 1,965 fm  0.33 [29] 

Tomato fruit soil 1,640 fm 0.030 9,719 dm 0.07 0.40 [31] 
Corn Stover water 406 fm  740 dm 0.23 0.42 [31] 
Bean roots soil 10,000 dm 0.072 650 fm  0.47 [29] 
Nutsedge water 406 fm  980 dm 0.20 0.49 [31] 

Corn Stover water 812 fm  1,780 dm 0.23 0.50 [31] 
Corn Stover water 2 fm  5 dm 0.23 0.57 [30] 
Bean roots water 10,000 fm  6,000 fm  0.60 [32] 
Bean stems soil 10,000 dm 0.017 3,924 fm  0.67 [29] 

Tomato fruit soil 7,675 fm 0.030 79,593 dm 0.07 0.70 [31] 
Nutsedge water 812 fm  2,960 dm 0.20 0.74 [31] 

Lettuce Leaves soil 1,770 fm 0.030 10,000 dm 0.05 0.75 [31] 
Corn ear soil 15,000 dm 0.005 112,000 dm 0.20 0.75 [33] 

Lettuce Leaves water 100 fm  77 fm  0.77 [30] 
Bean pods soil 10,000 dm 0.072 1,073 fm  0.77 [29] 

Lettuce Leaves soil 1,640 fm 0.030 9,620 dm 0.05 0.77 [31] 
Bean seeds soil 10,000 dm 0.005 17,475 fm  0.87 [29] 

Lettuce Leaves water 20 fm  18 fm  0.90 [30] 
Bean roots water 10,000 fm  9,000 fm  0.90 [32] 
Bean leaves soil 10,000 dm 0.072 1,346 fm  0.97 [29] 
Bean stems water 10,000 fm  11,000 fm  1.10 [32] 
Bean stems water 10,000 fm  11,000 fm  1.10 [32] 
Bean stems soil 10,000 dm 0.072 1,555 fm  1.12 [29] 
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Nutsedge water 134 fm  1,600 dm 0.10 1.22 [31] 
Corn Stover water 20 fm  107 dm 0.23 1.23 [30] 
Bean roots water 5,000 fm  6,200 fm  1.24 [29] 

Alfalfa shoot water 20 fm  25 fm  1.25 [30] 
Alfalfa shoot water 100 fm  131 fm  1.31 [30] 

Lettuce Leaves water 812 fm  21,320 dm 0.05 1.31 [31] 
Corn Stover water 134 fm  1,600 dm 0.11 1.37 [31] 

Lettuce Leaves water 406 fm  11,140 dm 0.05 1.37 [31] 
Corn stem soil 15,000 dm 0.005 212,000 dm 0.20 1.41 [33] 

Lettuce Leaves soil 673 fm 0.030 7,900 dm 0.05 1.55 [31] 
Bean roots water 5,000 fm  9,400 fm  1.88 [29] 
Bean leaves water 10,000 fm  19,000 fm  1.90 [32] 
Bean leaves soil 10,000 dm 0.017 11,937 fm  2.03 [29] 
Alfalfa roots soil 15,000 dm 0.005 313,000 dm 0.20 2.09 [33] 
Corn tassel soil 15,000 dm 0.005 326,000 dm 0.20 2.17 [33] 
Bean stems water 5,000 fm  10,900 fm  2.18 [29] 
Bean stems water 5,000 fm  11,000 fm  2.20 [29] 
Bean leaves soil 10,000 dm 0.005 45,515 fm  2.28 [29] 
Bean seeds soil 10,000 dm 0.017 13,535 fm  2.30 [29] 

Lettuce Leaves soil 5,800 fm 0.051 62,480 dm 0.05 2.39 [31] 
Corn tassel water 1,000 fm  16,000 dm 0.15 2.45 [34] 

Alfalfa seeds soil 15,000 dm 0.005 377,000 dm 0.20 2.51 [33] 
Lettuce Leaves soil 5,800 fm 0.054 62,740 dm 0.05 2.53 [31] 
Lettuce Leaves soil 7,675 fm 0.030 154,000 dm 0.05 2.65 [31] 
Alfalfa shoot soil 15,000 dm 0.005 429,000 dm 0.20 2.86 [33] 
Bean seeds soil 10,000 dm 0.072 4,025 fm  2.90 [29] 

Lettuce Leaves soil 50,300 fm 0.030 1,172,000 dm 0.05 3.07 [31] 
Carrot shoot soil 15,001 dm 0.005 469,000 dm 0.20 3.13 [33] 

Spinach seeds soil 15,000 dm 0.005 499,000 dm 0.20 3.33 [33] 
Corn leaves water 1,000 fm 0.005 22,000 dm 0.15 3.37 [34] 

Lettuce Leaves soil 5,800 fm 0.030 154,000 dm 0.05 3.50 [31] 
Spinach root soil 15,000 dm 0.005 528,000 dm 0.20 3.52 [33] 
Bean leaves water 5,000 fm  18,600 fm  3.72 [29] 
Corn leaves soil 15,000 dm 0.005 633,000 dm 0.20 4.22 [33] 
Radish roots water 2 fm  9 fm  4.50 [30] 
Tomato fruit water 2 fm  11 fm  5.50 [30] 

Spinach shoot soil 15,000 dm 0.005 832,000 dm 0.20 5.55 [33] 
Lettuce Leaves soil 5,800 fm 0.064 117,750 dm 0.05 5.58 [31] 
Lettuce Leaves soil 5,800 fm 0.067 117,960 dm 0.05 5.88 [31] 
Lettuce Leaves soil 5,800 fm 0.019 405,000 dm 0.05 5.99 [31] 

Bean leaves water 10,000 fm  97,000 fm  9.70 [32] 
Bean leaves water 5,000 fm  96,600 fm  19.32 [29] 
Carrot shoot soil 15,000 dm 0.005 4,294,000 dm 0.20 28.63 [33] 
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Figure Legends 

Figure 1.  Illustration of the pathways by which chemical agents are transferred from soil and 

soil solution and then into roots, stems, leaves and edible plant tissues.  Kd is the soil solids/soil 

solution partition coefficient, RCF the root concentration factor, TSCF the transpiration stream 

concentration factor, SCF the stem concentration factor, and Kps the generalized plant-to-soil 

bioconcentration ratio typically relating dry soil solids concentration to dry-mass (edible) 

vegetation concentrations.  

 

Figure 2. Comparison of the BCR estimates for several models with log Kow as the predictive 

parameter. Also included in this figure are the calibration data for each model and (dark) lines 

showing our estimate of the four standard deviation interval or 95% confidence interval about 

the BCR value based on the different models and data. 

 

Figure 3. A cumulative probability plot for the 81 observed values of RDX BCR in Table 2 

showing that the cumulative probability of these data based on rank order fits a cumulative 

lognormal distribution with a geometric mean (GM) BCR of 1.12 and geometric standard 

deviation (GSD) of 3.5. 

 

Figure 4. Cumulative probability plot showing the relative variance in experimental variability 

and model uncertainty for estimating the BCR value for a chemical such as RDX that has an 

expected BCR value of 1.12.  Also shown here are estimated 95% confidence intervals on the 

BCR estimate based on model uncertainty and experimental variability. 
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